Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

Robustes Diodenlasermodul für Weltraumanwendungen bei der Präzisionsmontage. ©FBH/schurian.com

Das Ferdinand-Braun-Institut präsentiert auf dem MikroSystemTechnik Kongress weltraumtaugliche Diodenlaser-Module, die auf der einzigartigen MikrointegrationsTechnologie des Instituts basieren. Weitere hybrid-integrierte Komponenten zeigt es aus Mikrowellentechnik und Terahertz-Elektronik.

Seine Entwicklungen stellt das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) auf dem MikroSystemTechnik Kongress vor. Vom 28. bis 30. Oktober ist das FBH am Gemeinschaftsstand der Forschungsfabrik Mikroelektronik Deutschland (FMD) im Estrel Berlin vertreten.

Kompakte und stabile Lasermodule für quantenoptische Präzisionsexperimente 
Das FBH besitzt umfassende Erfahrung bei der Entwicklung und Fertigung von kompakten, hybrid-integrierten Diodenlasermodulen. Ihr Design wird exakt auf die jeweilige Anwendung zugeschnitten. Die Technologie ist so in vielfältigen Bereichen einsetzbar, von der Sensorik über die Medizintechnik bis hin zu Weltraumanwendungen. Am Messestand zeigt das Institut Diodenlaser-Module, die bereits erfolgreich in verschiedenen Experimenten unter Schwerelosigkeit eingesetzt wurden. Die Module bestehen aus Laserdioden, die am FBH entwickelt und hergestellt und gemeinsam mit Optiken und weiteren passiven Elementen mit höchster Stabilität und Präzision – teils in Bereichen von unter 100 nm – aufgebaut werden. Dank der einzigartigen Mikrointegrationstechnologie des FBH sind die Module extrem robust und ideal für den Einsatz unter anspruchsvollen Bedingungen im Weltraum geeignet. Sie zeichnen sich zudem durch geringe Abmessungen von nur 130 x 80 x 25 mm³, eine geringe Masse (750 g) sowie exzellente Leistungsparameter aus: Ausgangsleistungen > 500 mW bei zugleich schmaler intrinsischer Linienbreite < 1 kHz werden erreicht. 

Entwicklungen aus der Mikrowellentechnik und Terahertz-Elektronik
Der Terahertz (THz)-Bereich bietet eine gute räumliche Auflösung und kann die meisten nicht-metallischen Materialien durchdringen. Damit eignet er sich für industrielle und sicherheitsrelevante Anwendungen. Das FBH zeigt THz-Detektoren, die sich auch zu Arrays anordnen lassen. Die III/V-basierten THz-Detektoren bieten beste Werte für die äquivalente Rauschleistung NEP < 25 pW/sqrt(Hz) mit höchster Empfindlichkeit von > 100 mA/W bei 500 GHz – und übertreffen damit die besten THz-Detektoren in CMOS-Technologie.
Für die mobile Kommunikation der Zukunft entwickelt das Institut digitale Leistungsverstärker mit effizienten Verstärker-Chips, die auf dem 0,25 µm GaN-HEMT-Prozess des FBH basieren. Mit ihnen hat das Institut die erste volldigitale Transmitterkette realisiert, die breitbandige Signale mit höchster Effizienz und Linearität (47% bei > 52 dB ACLR) erfolgreich überträgt. Der kompakte digitale Transmitter eignet sich besonders für Mehrantennensysteme, bei denen er auf der Rückseite der Antenne montiert wird.
Das FBH stellt zudem Konzepte zum Envelope Tracking (ET) vor, eine bekannte Technik zur Effizienzsteigerung von Solid-State Power Amplifiern. Damit lässt sich die Versorgungsspannung des HF-Leistungsverstärkers entsprechend der momentanen Hüllkurve des zu verstärkenden Signals modulieren. Zusammen mit der Europäischen Weltraumagentur ESA hat das FBH einen neuartigen ET-Demonstrator für die Kommunikation im Weltraum bei 1,62 GHz entwickelt. Der Verstärker hat eine Spitzenausgangsleistung von mehr als 90 W bei einer Modulationsbandbreite von 40 MHz. Mit einem 8,6 PAPR (Peak-to-Average Power Ratio)-Signal liegt der Gesamtwirkungsgrad bei 40%.
Das FBH hat das Konzept der Versorgungsspannungs-Modulation auch auf Millimeterwellen-Verstärker übertragen. Das entsprechende Modul besteht aus zwei identischen MMICs, die in Reihe geschaltet sind. Diese bestehen jeweils aus einem einstufigen Verstärker mit integriertem zweistufigen Spannungsschalter, der die Versorgungsspannung des Verstärkers in diskreten Stufen moduliert. Das Modul arbeitet im Bereich von 20 - 26 GHz mit 14 dB Verstärkung und mehr als 2 W/mm bei 20 V Versorgungsspannung. 

Hintergrundinformationen – das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation und integrierten Quantentechnologie. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt mehr als 300 Personen und hat einen Etat von 37,9 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V., ist Mitglied der Leibniz Gemeinschaft und Teil der »Forschungsfabrik Mikroelektronik Deutschland«. www.fbh-berlin.de 

Kontakt:
Petra Immerz, M.A.
Communications Manager    
Ferdinand-Braun-Institut 
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel.  030.6392-2626
Fax  030.6392-2602   
E-Mail petra.immerz(at)fbh-berlin.de